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We report a comprehensive spin wave analysis of the semiconducting honeycomb van der Waal antiferro-
magnet NiPS;. Using single-crystal inelastic neutron scattering, we map out the full Brillouin zone and fit the
observed modes to a spin wave model with rigorously defined uncertainty. We find that the third-nearest-neighbor
exchange J; dominates the Hamiltonian, a feature which we fully account for by ab initio density functional
theory calculations. We also quantify the degree to which the threefold rotation symmetry is broken and
account for the Q = 0 excitations observed in other measurements, yielding a spin exchange model which is
consistent across multiple experimental probes. We also identify a strongly reduced static ordered moment and
reduced low-energy intensity relative to the linear spin wave calculations, signaling unexplained features in the
magnetism which requires going beyond the linear spin wave approximation.
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I. INTRODUCTION

Magnetic van der Waals materials which can be exfoliated
down to the monolayer limit have tremendous potential for
new electronics applications and devices [1]. Of special inter-
est is whether new and exotic states can be stabilized because
of the low-dimensional properties. One such candidate mate-
rial is NiPS3. NiPS3 is a semiconducting layered honeycomb
antiferromagnet with the crystal structure shown in Fig. 1.
Its magnetic Ni>* ions order magnetically at Ty = 155 K
[3,4] to a zigzag antiferromagnetic order with moments along
the ¢ axis [5]. NiPS; has very strong spin-charge coupling
[6,7] and because of this is already being made into workable
devices [8,9]. Its magnetic excitations have been measured
with powder and single-crystal neutron scattering [10,11]
and density functional theory shows dominant J3 exchange
interaction [12,13], but certain features in its magnetic Hamil-
tonian (namely, the low-energy modes) remain imperfectly
understood. Perhaps most intriguingly, x-ray, photolumines-
cence, and optical absorption spectroscopies show a bound
exciton state consistent with Zhang-Rice triplet formation
between Ni and surrounding S ligands [14], which suggests
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the magnetism is far from conventional. This raises two key
questions: What is the full exchange Hamiltonian of NiPSs3,
and are there signs of exotic quantum effects in the collective
magnetic excitations?

To answer these questions, we perform a detailed study
of single-crystal NiPS3 using inelastic neutron scattering. We
fit the spin waves using linear spin wave theory to estimate
the magnetic exchange Hamiltonian, perform first-principles
Wannier function calculations in combination with strong-
coupling perturbation theory to explain this Hamiltonian,
and thus derive a model which accounts for the observed
excitations in optical spectroscopy [7,14]. We find a dom-
inant third-nearest-neighbor exchange (a behavior which is
unusual but fully explicable with first-principles calculations),
a strongly reduced ordered moment, and anomalously small
low-energy intensity. The third-nearest-neighbor exchange is
fully explicable with first-principles calculations, but the re-
duced moment and anomalous intensity are not, and thus
indicate quantum spin entanglement and higher-order effects.

II. EXPERIMENT AND RESULTS

We measured the inelastic neutron scattering spectrum
of NiPS; using the SEQUOIA spectrometer [15,16] at the
Spallation Neutron Source (Oak Ridge National Laboratory)
[17]. The sample consisted of 26 coaligned crystals (total
2.41 g) glued to aluminum plates with the c axis vertical (see

©2023 American Physical Society
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FIG. 1. Crystal structure of NiPS3, shown for a single layer (left)
and the stacking pattern for multiple layers (right) visualized using
VESTA [2]. The first three neighbor in-plane exchanges are shown on
the left.

Appendix A for details). Although NiPS; technically has
broken threefold rotation symmetry at the Ni’* sites, the
distortion is so weak that we could not easily distinguish
(h00) from (hh0), and in the coalignment we treated them
as identical. In the plots in this paper, the cuts listed (e.g.,
in Fig. 2) in reality include a superposition of cuts rotated in
the plane by £120°. (In the spin wave modeling below, we
calculated the three overlapping orientations with a weighting
1:1:1.) For a background, we measured an identical sample
holder with no sample. We measured the inelastic spectra in
the (hk0) scattering plane with incident energies (E;) of 28, 60,
and 100 meV at S K, and E; = 28 meV and E; = 100 meV at
100 K, and 200 K. Data were then symmetrized by in-plane
reflections about (20¢) and (0kf). Two-dimensional slices of
scattering data are shown in Fig. 2.

In the 5- and 100-K data, spin wave modes are clearly
visible in the data, being very well defined in the in-plane
scattering directions, with a pronounced maximum intensity
at ~14 meV. At 200 K (above Ty = 155 K), the modes
are less well defined and the gap closes. The most intense

inelastic scattering is at the bottom of the dispersion at k and
h wave vectors associated with the zigzag antiferromagnetic
order. This mode has very steeply dispersing magnon modes
which, because of experimental resolution broadening, makes
the low-energy extent difficult to experimentally determine.
Nevertheless, as temperature increases, the gap steadily closes
(Fig. 3). This temperature-dependent gap is well understood
for low-dimensional magnets [18], and was also observed in
FePS; [19] and MnPS; [20].

Although experiments clearly show NiPS; to be dominated
by in-plane exchange interactions, a weak dispersion is visible
in the £ (out-of-plane) direction as shown in Fig. 2(d). Because
of the intense, highly dispersive scattering, the £ dependence
appears as a lower envelope to the scattering with a bandwidth
of 6.5 meV. The ¢ periodicity is the same as the lattice,
indicating ferromagnetic interplanar exchange.

III. SPIN WAVE FITS

Having observed such well-defined magnons, we fitted
a linear spin wave theory (LSWT) model to the data to
determine the exchange constants. However, we must also
ensure that our model is consistent with other experiments.
From other studies, it is clear that the Ni** magnetism
is predominantly easy plane [3,12,21,22]. In addition, mul-
tiple measurements have reported three low-energy Q =
0 magnetic modes in the NiPS; ordered phase: Electron
spin resonance indicates A; = 1.07 meV [22], optical spec-
troscopy indicates A; = 1.16 meV and A, = 3.79 meV [7],
and photoluminescence indicates A} = 1.7 meV and A, =
3.3 meV, deduced from shoulder peaks near the main pho-
toluminescence peak (proposed to be the Zhang-Rice singlet
to Zhang-Rice triplet transition) [14]. Meanwhile, terahertz
optical spectroscopy reveals a clear Q = 0 magnon mode at
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FIG. 2. Measured neutron spectra of NiPS; along different directions in reciprocal space. Data at [(a)-(d)] 5 K, [(e)-(h)] 100 K, and
[(1)-(1)] 200 K. In each panel, the different E; data are overlaid. The boundaries between the different data sets appear as faint grey lines. At 5
and 100 K, spin wave modes are clearly visible. The modes become broadened and gapless at 200 K. Note that all data are symmetrized about
h =0 and k = 0, and intensity is in absolute units but not corrected for the form factor.
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FIG. 3. Temperature evolution of the low-energy gapped mode
in NiPS;, showing (1/2,5/2, 0) and (1,2,0) wave vectors measured
with E; = 28 meV neutrons. Between 5 and 100 K, the intensity
maximum shifts slightly lower in energy, while at 200 K (above Ty)
the modes become gapless. Note that the intensity profiles of the two
points (which nominally correspond to C and I') are identical, even
with different ¢ integration widths.

= 5.5 meV which disappears as T — Ty and is also
present in the absence of photoexcitation [23]. By semiclassi-
cal spin wave theory, there can only be two low-energy O = 0
modes in NiPS;. We believe the true Q = 0 magnons are
Ay and Ajz because the A, ~ 3.5 meV mode only appears
with >1 eV optical pumping and is near 2A;, suggesting
it is a nonequilibrium effect and/or involves the creation of
two low-energy magnons. [One other possibility is a lon-
gitudinal magnon mode, but SU(3) simulations do not find
an additional mode, (see Appendix D). Furthermore, longi-
tudinal modes are typically far broader in energy than the
transverse magnons [24], not sharp modes as observed in
NiPS3.) Thus, we take the low-energy Q = 0 magnon gaps
to be A = (1.3 +£0.3) meV (average of the reported values)
and A = (5.5 £0.3) meV (uncertainty taken from the lower-
energy mode). We include these fixed average gap values in
our model for the low-energy Q = 0 modes.

The fitted model is based on Heisenberg (isotropic) ex-
change with single-ion anisotropy terms,

H= U8+ [A:(8) +A,
ij i

where S; are quantum spin operators of length 1, J;; determine
the exchange interaction strengths, and A, and A, are the
single-ion anisotropy terms. To constrain the fit, we extracted
the spin wave dispersions from the neutron data by fitting
multiple independent constant-Q cuts with a Gaussian across
18 different iiw vs Q slices (see the Supplemental Material
[25]). Where the dispersion was steep, we also fitted constant
hiw slices, yielding a total 267 individual Q and %w points
(treating data from each different measured E; separately).
We then fit the NiPS3 spin waves to the mode energies using
SPINW [26] assuming three in-plane exchanges and one out-
of-plane exchange J;. We found that, in order to produce a
q =K = (1/2,1/2,0) intensity maximum at ~14 meV while
retaining the two low-energy O = 0 modes above, the three-
fold rotation axis must be weakly broken (which, as shown in
Fig. 1, is true of the C2/m space group for NiPS3). Otherwise,
the only modes at ¢ = K would be A = 1.3 meV and A =
5.5 meV. We therefore allow the two symmetry-inequivalent
first-neighbor bonds to have different values (J, and Jip),

()]

TABLE I. Hamiltonian exchange parameters for NiPSs. The left
column shows the best fit model in units of meV, where the broken
threefold symmetry is represented by Ji, (two nearest-neighbor ex-
changes with components along the a axis) and Jj;, (nearest-neighbor
exchange along the b axis). Error bars indicate one standard deviation
uncertainty. The right column shows the density functional theory
(DFT) calculated exchange constants for Jy, J,, and J3, which are
very close to the experimental values.

DFT + perturbation
Model Fitted LSWT U =3eV,Jy =0.5eV)
Ay —0.010 £ 0.005
A, 0.21+0.03
J1a —2.7£04 2.7
Jip —-2.0+04 —24
Jo 0.2+0.3 —-0.42
J3 13.9+04 13.9
Ju —0.38£0.05

while the other in-plane exchanges J, and J; are assumed
to have the same exchange on all honeycomb bonds. The
resulting fitted parameters are in Table I, with the linear spin
wave simulated scattering in Fig. 4. A plot of high-symmetry
cuts is shown in Fig. 5. (See Appendix B for the uncertainty
estimation method, and note that although Jj, and J;, individ-
ual uncorrelated uncertainties overlap, J;/J1, > 1 to within
uncertainty.)

One thing that was immediately apparent was that—even
assuming a broken threefold rotation symmetry—there was
far too much intensity at low energies for all our initial LSWT
simulations [Figs. 4(f)—4(j)]. However, we found that if we
calculated the LSWT over a finite window in Q transverse to
match the experimental bin widths [£0.05 reciprocal lattice
units (RLU) in the plane, and +0.25 RLU out of the plane],
we reproduced the low-energy modes better [Figs. 4(k)—4(0)],
though not perfectly as we discuss below. The dispersion is
so steep there that any finite bin size broadens the modes and
shifts the intensity maximum to higher energy transfers. This
explains the anomalous intensity down to very low energies at
the antiferromagnetic wave vectors also observed in Ref. [11].
This also meant that the fitted experimental Q and %w points,
because they were extracted from cuts with finite bin size,
are higher than the actual modes. We therefore calculated the
difference in mode energy between the raw LSWT calculation
[Figs. 4(f)—4(j)] and the finite-bin summed LSWT calculation
[Figs. 4(k)—4(0)], corrected the experimental Q and 7w points
by this offset, and refit the Hamiltonian. The values in Table I
represent the fit to these corrected dispersions.

In fitting the Hamiltonian, we also included in-plane ex-
change terms beyond the third-nearest neighbor in plane, but
we found that these did not improve the reduced x> by > 1,
and thus we consider them to be zero to within uncertainty.
We also tried including a Kitaev term in the exchange, but this
also did not improve the fit and instead introduced extra modes
in the spectrum which are not present in experiment. Finally,
we note that in reality, the broken rotation symmetry will
affect all bonds, not just J;. However, to reduce the number
of fitted parameters, we collect all such effects in J; in order
to provide a minimal model for reproducing the experimental
observations.
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FIG. 4. Measured and fitted NiPS; spin wave spectra. [(a)—(e)] The measured spin wave spectra (with E; = 100, 60, and 28 meV overlaid
as in Fig. 2). [(£)-(j)] The fitted linear spin wave theory (LSWT) spectra and [(k)—(0)] the same LSWT spectra integrated over the finite widths
in h, k, and ¢ for the actual experimental data. Because of finite bin widths, the low-energy scattering is much weaker than it would be with
infinitesimal bins. (Note that the low-energy intensity in panel (e) near (200) is an acoustic phonon mode.)

One of the most striking features of the fit is that the third-
nearest-neighbor exchange J; dominates the Hamiltonian. A
dominant third-nearest-neighbor in-plane exchange is not un-
usual for hexagonal 3d magnets, as seen in, e.g., NiGa;Sy
[27], BagNiTCOG [28], N32C02T606 [29], BaNiz (ASO4)2
[30], and BaCo,(AsOy4), [31] and many members of the
MPX; family [32-34]. However, the extremely large J;3 we
derive (nearly six times larger than Jy, or |J3/J;| = 5.9) is, to
our knowledge, the largest observed.

IV. FIRST-PRINCIPLES CALCULATIONS

A. Density functional theory

To explain this enormous J3, we perform density functional
theory (DFT) calculations to estimate the Hamiltonian from

" ONiPS;, T=5K 0.6
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FIG. 5. Plot of (a) scattering data along high-symmetry direc-
tions compared to (b) the linear spin wave theory (LSWT) simulation
and (c) the LSWT mode energies.

first principles. Reference [33] studied Dirac cones formed
by the half-filled e, bands in monolayer MBXj3, focusing
on monolayer PdPS;. They plotted the monolayer Wannier
functions and reported the hopping integrals to neighboring
transition metal sites. Likewise, we justify the hierarchy of
magnetic exchange constant magnitudes by examining the re-
spective hopping integrals of the e, bands first. The maximum
magnitude of the nearest-, second-nearest-, and third-nearest-
neighbor hopping integrals are 52.94, 29.54, and 215.52 meV,
respectively (see also Table 1V). The eg,-e, hopping inte-
grals for nearest neighbors are relatively small, and they
are even surpassed by the eg-t;, hopping integrals (52.94 <
176.01 meV). The present calculation for bulk NiPS; is dis-
tinct from the monolayer calculation of Ref. [33] in that it
incorporates the f,, orbitals, and their relative importance
for the nearest-neighbor exchange is already evident. Next
we explain why the inclusion of the #,, orbitals is neces-
sary to capture ferromagnetic (FM) exchange for the nearest
neighbors [failure to do so inaccurately leaves one with an an-
tiferromagnetic (AFM) J; and overestimates J3] and examine
how the large third-nearest-neighbor hopping integral comes
to be.

We visually demonstrate how the hopping integrals are
either notable or diminished in Fig. 6. The third-nearest-
neighbor (3NN) e,-e, hopping integrals are the largest of
all, leading to the large AFM 3NN exchange. Previous work
has argued for substantial overlap to produce the d-p-p-d
exchange for the e, orbitals for 3NN hopping [33,35] and this
is shown in Fig. 6(a). The 3NNs do not share ligand S atoms,
and the p-tail lobes point toward each other, further enhancing
overlap. By contrast, the nearest-neighbor (INN) e,-e, hop-
ping integrals are relatively diminished, leading to small FM
INN exchange. As shown in Fig. 6(d), the orientation of the p
tails on the shared ligand S atoms is nearly orthogonal, leading
to substantial cancellation.

The e,-1;, hopping integrals are important both to cap-
ture the FM nature of the 1NN exchange and to accurately
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FIG. 6. Wannier function overlaps. (a) The largest hopping integral for the third-nearest neighbor (3NN) between d,2_,» orbitals. (b) The
largest hopping integral for the nearest neighbor (INN) between d,, and d_> orbitals. (c) The second largest hopping integral between 3NN d,,

and d> orbitals. (d) The diminished hopping integral between 1NN d,.

Xe—=y
Teal atoms are Ni, grey atoms are P, and yellow atoms are S (like Fig. 1).

calculate the 3NN exchange. Figure 6(b) shows the 1NN over-
lap between d,, and d» orbitals. Again, the 1NNs share their
ligand S atoms, but the p tails overlap each other to reinforce
the hopping. In Fig. 6(c), the 3NN overlap between d,, and
d, orbitals is relatively diminished; the d_. orbital’s primary
p tails are not pointing toward the neighboring Ni atom, and
the smaller p tails point toward each other less directly than
in the eg-e, case. This e,-1,, process contributes to FM 3NN
exchange, but it is merely a small fraction of the large AFM
exchange supported by the e,-e, hopping.

B. Perturbation theory

Armed with the full e, and #,, tight-binding Hamiltonian,
we apply perturbation theory in the strong-coupling limit (ex-
plained in Appendix E) to extract the exchange constants,
listed in Table I. These are in close agreement with the
experimentally fit exchange constants, except for the theoret-
ical prediction that J, be weakly ferromagnetic where it is
experimentally shown to be weakly antiferromagnetic. Our
perturbation theory results are also in close agreement with
the results in Ref. [13] obtained from fitting total energies of
magnetic configurations simulated with DFT+U.

The theoretical prediction can be understood as follows.
For a given pair of atoms, there are three major exchange
processes to consider, one FM interaction and two AFM in-
teractions as depicted in Fig. 7. The (1) FM and (2) first
AFM processes involve e,-f>, hopping, and (3) the other AFM
process involves e,-e, hopping. The difference between the
former two processes is in the intermediate states which arise
in the calculation of the second-order perturbation to the en-
ergy. The intermediate state of FM process 1 maximizes the
spin multiplicity (total spin quantum number) on one atom
(in comparison to AFM process 2), giving a lower Hund
energy for that configuration, and thus a larger reduction in

> orbitals. Red (blue) surfaces are the positive (negative) isosurfaces.

the energy. FM process 1 tends to dominate for reasonable
values of the interaction parameters. For the results in Table I
we used U = 3 eV and Jy = 0.5 eV. See Appendix E for the
full dependence on U and Jy.

Thus, for the nearest neighbors where the strongest hop-
ping is e,-t2e, the FM exchange process dominates and J; < 0.
For the second-nearest neighbors, the strongest hopping is
again e,-t5, and again the FM process dominates, but the
maximum magnitude of these hopping integrals is less than
half that of the nearest neighbors. So again J, < 0 (theoreti-
cally, and maybe experimentally to within uncertainty), but it

FM AFM

4l

K
K
K

Ni2

T//Ml
11 11}
tot
tot

Nil Ni 2

7

K
K
K

Ni1l

FIG. 7. Schematic diagram of the major ferromagnetic and anti-
ferromagnetic exchange processes in the e, and t,, band manifolds.
The boxes indicate electron orbitals, and the loops indicate hopping
pathways.
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is less than one-quarter the magnitude of the nearest-neighbor
exchange. Finally for the third-nearest neighbors, the egz-e,
AFM process is by far the dominant exchange and J; > 0,
with the largest magnitude of all the exchange constants. The
third-nearest-neighbor d.-d,, hopping integral is not negli-
gible (Table VI), so the competition between FM process 1
and AFM process 2 is still present, but this cannot overpower
the eg,-e, AFM process for which the hopping integral is three
times larger. However, this does indicate that a model includ-
ing only the e;,-e, AFM process will overestimate the large J3.

V. DISCUSSION

At this point, we have a theoretical model for the observed
spin waves and Q = 0 excitations, as well as a first-principles
explanation for the strength of the exchange couplings. Thus
we have answered our first question about the NiPS3 exchange
Hamiltonian. Now we turn to the second question: Given the
proposed exotic Zhang-Rice behavior of NiPS3, are there any
features in the inelastic spectrum which cannot be accounted
for by linear spin wave theory?

Although the LSWT calculation reproduces the inelastic
spectrum well, the LSWT approach does not match the static
ordered moment. Antiferromagnetic spin waves will, in gen-
eral, reduce the size of the ground state ordered moment
relative to its maximum value [36], and substantial quantum
entanglement can reduce the moment much further. Calculat-
ing the 7 = 0 spin expectation value for the fitted spin wave
Hamiltonian, we find g(S) = 1.73up (assuming g = 2.00) for
Ni?*. This is much larger than the experimental ordered mo-
ment 1.05up [5], which indicates that the real material NiPS3
has substantially more quantum fluctuations than linear spin
wave theory gives.

In general, a strongly reduced static T — 0 moment (for-
mally defined by the “one-tangle” entanglement witness [37])
indicates substantial quantum spin entanglement, showing
that NiPS3 is not merely a conventional antiferromagnet. In
other words, the Ni*" magnetism cannot be described by
linear spin wave theory alone, and therefore it is subject to
more exotic quantum effects. The missing spin components
presumably reside within the excitation spectrum, potentially
at O = 0 where neutrons cannot directly probe.

The next item of comparison is details in the neu-
tron spectrum. We compare the experimental data against
resolution-convolved simulated scattering from best fit pa-
rameters in Table I using MCVINE, a Monte Carlo ray
tracing software to simulate time-of-flight resolution effects
for the exact instrumental configuration and experimental
bin widths [38,39] as shown in Fig. 8 (see Appendix C for
details).

Although LSWT correctly captures the intensity near the
finite-energy maximum, LSWT predicts a much larger low-
energy “tail” to the dispersion than is seen experimentally. In
Appendix D we show that quadrupolar SU(3) dynamics (as
will be present in § = 1 Ni*™ [40]) explains one-third of the
reduced intensity, but nowhere near the dramatic reduction
seen in experiment. The absent intensity must have a more
exotic explanation. It is striking that the intensity is anoma-
lously small at the lowest energies, near where the hiw = 0
static magnetism is also anomalously small. This means that

'(a) NiP§3 data '(b) simulation’

20
(res. conv.) 1.0 %:N
M)
10 05 T
c
3.
2
0= 0 = 0 0.0
(0.5,k,0) (0.5, ,0)
(c) (1/2,5/2,0) intensity — <imulation
h+0.03, 7+£0.25 t 5Kdata

w

I (arb. units)
N

hw (MmeV)

FIG. 8. Comparison between simulated resolution-broadened
spin waves and experimental data at the bottom of the dispersion.
(a) The E; = 28 meV data at 5 K, and (b) the exact same cut with
the best fit Hamiltonian LSWT simulation with MCVINE simulated
resolution convolution. The intensity maxima in experiment and
theory are close in energy, but the theoretical intensity extends much
lower in energy. (c) A constant-Q plot of experiment and simulation,
showing that the experimental low-energy tail of the dispersion is
suppressed relative to the LSWT calculation.

quantum effects somehow seem to suppress the low-energy
(long-time) magnetic response in NiPS3.

The combination of a reduced static moment and anoma-
lously suppressed low-energy intensity shows that LSWT fails
to fully account for the low-energy magnetism of NiPS;. Fur-
ther theoretical modeling is required to say for certain whether
Zhang-Rice triplets account for the reduced moment, but we
propose the observed resonances in Ref. [14] as a potential
explanation. A careful measure of the magnetic form factor
could indicate whether a portion of the magnetic moment
resides on the S sites in accord with the Zhang-Rice triplet
hypothesis. Be that as it may, these experimental observa-
tions beg for theoretical explanation: Something very unusual
is going on at the lowest energies. NiPS; has conventional
magnons, but that is not the end of the story.

VI. CONCLUSION

We have measured the spin wave spectrum in NiPS; and
modeled the spin waves, extracting a magnetic Hamiltonian
with rigorously defined uncertainty. We have also used first-
principles calculations to model the magnetic exchange, and
we find that DFT agrees very well with our experimentally de-
termined exchange constants—in particular the anomalously
large third-nearest-neighbor exchange J;. The microscopic
mechanism for the dominant third-nearest-neighbor ex-
change is elucidated by combining DFT with strong-coupling
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perturbation theory. Our fitted model is able to account for
the finite energy maxima observed in neutron scattering, as
well as the mode gaps observed in other experimental meth-
ods. The full profile we provide of long-wavelength (Q = 0)
magnetic excitations is essential knowledge for van der Waal
magnets, because these modes most directly couple to optical
and electronic excitations as relevant for spin-orbit entangled
excitons and spintronic technology.

Finally, we highlight a dramatically reduced static mo-
ment and suppressed low-energy intensity, which indicates
that LSWT fails to fully explain NiPS; magnetism, espe-
cially in the low-energy (long-time) dynamics. This indicates
an anomalous quantum state in NiPS3, potentially driven by
Zhang-Rice triplet pairing.

Note added. Recently, Ref. [11] was published report-
ing similar measurements and a similar fitted spin exchange
Hamiltonian to this study.
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APPENDIX A: SAMPLE PREPARATION AND
EXPERIMENTAL DETAILS

Single-crystal NiPS; was grown by a standard chemical
vapor transport method. Pure Ni (>99.99%), P (>99.99%),
and S (>99.998%) powders were mixed in a molar ratio of
1:1:3 inside an Ar-filled glove box. We added an additional
5% sulfur to the mixture for vapor transport. We analyzed
the chemical composition of the resultant single crystals us-
ing energy-dispersive x-ray spectroscopy (Bruker QUANTAX
70), which confirmed a correct stoichiometry. We further char-
acterized its magnetic property using a commercial SQUID
magnetometer (MPMS-XL5, Quantum Design), the result of
which is consistent with previous studies [5,21].

FIG. 9. NiPS; sample mount, shown from the side and from the
top. Because of the near-threefold rotation symmetry, the coaligned
crystals are aligned with the a axis in one of three directions, as
shown on the right.

The sample for the SEQUOIA experiment was composed
of several coaligned NiPSj crystals totaling 2.41 g, glued to
aluminum plates with CYTOP glue [41]. The sample mount
in shown in Fig. 9. Because of the near-threefold rotation
symmetry about ¢* and the weak interplane van der Waals
bonding, the sister compound FePS; has twinned domains
separated by 120° rotation about ¢* [42,43], and we expect
the same situation with NiPS3. Indeed, x-ray Laue diffraction
failed to distinguish the [100] from the [—1/2,1/2,0] or
[—1/2, —1/2, 0] directions, which meant that the sample is
a combination of orientations as shown in Fig. 9.

The instrument settings for the SEQUOIA neutron mea-
surements are given in Table II. For background, we made
an identical sample holder with the same amount of CYTOP
glued to it but with no crystals. This dummy sample was mea-
sured at the same energy and temperature configurations as
the actual sample, and the measured scattering intensity was
subtracted from the data. Plotted data were symmetrized with
the following symmetry operations: x, y, z; —x, ¥, Z; X, —, Z;
—x, —Y, z (see Fig. 10).

Data were normalized to absolute units by fitting the (060)
transverse acoustic phonon in accord with Ref. [44] as shown
in Fig. 11. Data were normalized per formula unit, equivalent
to per Ni ion.

TABLE II. SEQUOIA instrument parameters [16] for the NiPS;
spin wave measurements at the various incident energies. Fermi
Chopper 2 (middle column) is the high-resolution chopper.

Nominal E; Actual E; Fermi Fermi v Tov
(meV) (meV) Chopper (Hz) (Hz)
100 103.4 2 540 120
60 62.1 2 420 90
28 28.9 2 300 60
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FIG. 10. Symmetrization of NiPS; neutron data. The left column
shows the unsymmetrized data, and the right shows the symmetrized
data (x, y, z; —x, y, 23X, =Y, Z; —x, —, 2) for a constant-energy (4k0)
slice, and a (1/2, k, 0) slice.

APPENDIX B: LINEAR SPIN WAVE FITS

In fitting the dispersions using linear spin wave theory, we
extracted the mode energies at 267 unique Q points, which
are plotted in the Supplemental Material [25]. The reduced x>
of the Q = 0 modes and the finite-Q spin wave modes were
calculated separately and added, so that the number of points
does not give undue weight to the neutron spectra.

We estimated uncertainty for the fitted exchange parame-
ters by mapping out the reduced x> contour for one standard
deviation uncertainty [45]. Following the method in Ref. [46],

w
opp

0,p

N

(0,k,0)
=
(uow/s32 ,-0L)

I (10~* cts/mon)

FIG. 11. Phonon fits for absolute unit conversions. Linear cuts
through the 7 =5 K (0,6,0) acoustic phonons at fiw = 10 meV
scattering, the integrated width shown by the faint red lines in (a) and
(b), at E; = 60 meV (left) and E; = 100 meV (right) were fitted to
Gaussian curves to extract the area a in (c) and (d). This was used to
normalize the scattering intensity to absolute units.

425y T [ G
o
41_5- L |‘ best fit Jd b N :v bes‘tf\t 4 F N x besltﬁt B
-15 -10 -5 200 225  -3.0  -25
Ay (peV) A; (peVv) Ji12 (MeV)
425y 7 e~ = 1[® ]
Y420l Il Il ]
«242.0 i
415_ ‘ bestfit 4 | . ‘ bestfit{ | l best fit s
225 20 -0200 0.2 04135 140 145
Jip (MeV) 5, (meV) J3 (meV)
42575 : 42510
R~
42,0 42.0}
415 §eern a15b b
~0.40 —0.35 13 1.4
Jy (meV) J1al b

FIG. 12. Range of solutions for NiPS; spin waves within Ax? =
1 of the best fit solution, using a method of fixing a parameter and
allowing all others to fit freely. This was used to determine the one
standard deviation uncertainty in Table 1. (h) The x> contour for
J1a/J1b, showing that although the Jy, and Jy;, single-value uncertain-
ties overlap, they are unequal to within uncertainty.

we fixed each parameter to a value slightly above or below its
best fit value and varied the other parameters until an optimum
fit was achieved. If this new best fit 2 is within Ay? =1
of the optimum 2, we keep it as a valid solution and take

(a) Summed LSWT

(b) LSWT

S 40 &R 1 s
3 g 8 g o
£ 30 S * .
3 ¢ ¢
=20t
10} ¢ summed LSWT 1L ¢ exp
¢ LSWT ¢ Corrected exp.
0 0 1 2 3 0 1 2 3
(h,1/2,0) (h,1/2,0)

FIG. 13. Effect of finite integration window on spin wave disper-
sion. (a) The LSWT simulated scattering along (k, 1/2, 0) summed
over —0.05 < k < 0.05 reciprocal lattice units (RLU) and —0.3 <
¢ < 0.3 RLU. (b) The same data at exactly (4, 1/2,0), but with
Gaussian broadening applied. The colored circles give the fitted
mode energies at the same wave vectors that were extracted from
experiment. (c¢) The difference between the mode energies extracted
from (a) and (b). (d) The experimental extracted mode energies
(white) and the corrected mode energies (blue) shifted by the offset
determined in (c).
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FIG. 14. Measured and fitted NiPS; spin wave spectra showing the effect of J5. [(a)—(e)] The measured spin wave spectra. [(f)—(j)] The
fitted linear spin wave theory (LSWT) spectra using a J;-J, model. [(i)—(1)] The fit using a J;-J,-J3 model. In none of the cuts does the J;-J,
model resemble the data, while the addition of J3; makes the spin wave calculated modes match experiment much more closely.

another step away from the optimum. This is repeated until
the best fit values are greater than Ax? = 1, and are no longer
within one standard deviation uncertainty of the optimum.
Plots of valid solutions are shown in Fig. 12. In this way, the
extrema of the x? contour is mapped out along every fitted

(a)SU (2) simulation 2
4 &
- - lo
(c)SU (3) simulation s
/\ /' <
3,
/ \ 17
.! \‘ .P
2 0
(0, ,0) (0.5, k,0)
'5 2r(e) g=r — SU®) ] 2150 _(f) q=K
c — Ssu@d) | €
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P 'E 100t
Al e
3 § 50¢F
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o0 5 10 0O 10
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FIG. 15. Calculated NiPS; dispersion for SU (2) (classical dipo-
lar) and SU(3) (S = 1) dynamics using Landau-Lifshitz dynamics
as implemented with SUN)NY [51]. Calculated dispersions along
two different cuts for [(a), (b)] SU(2) and [(c), (d)] SU(3). The
differences are very minor, involving only a suppression of intensity
at the lowest-energy ¢ = I' modes, and a slight enhancement at
g =K =(1/2,1/2,0). Thus quadrupolar SU (3) dynamics does not
explain the discrepancy between experiment and LSWT in Fig. 8.

variable, and the extent is taken to be a measure of statistical
uncertainty.

Figure 13 shows the effect of finite width binning on the
simulated LSWT data, and showing that this effect shifts
the dispersions up in energy from their actual locations. In the
final fits reported in the main text, the experimentally fitted
spin wave modes were shifted downward in energy to account
for this effect by calculating the difference between the LSWT

25 F
2.0
15 [ -
1.0 | —
05
0.0

\
s T

-1.0

]

|
|

E-Er (eV)

-2.0
-25
-3.0 r

—
35 ~_>
0 ><>\<><[J
r Y M A r

FIG. 16. Bulk band structure without spin-orbit coupling. The
red bands are produced from the Wannier function Hamiltonian and
the disentanglement window is depicted by the double-headed red
arrow.
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J (meV)

1.0

Jy (eV)

FIG. 17. Exchange constants (meV) as a function of U and Jy for (a) J; along the X; bond, (b) J, along the X, bond, and (c) J; along the
X5 bond. The dashed lines are the 0 meV isocurves. (d) For the specific case of U = 3 eV, J; and J, are FM for all but the smallest Jy. Solid

lines are for X 5 3 bonds, and dashed lines are for Z, , 3 bonds.

at infinitesimal Q binning and at the actual experimental Q
binning.

Effect of J3

J3 is by far the largest exchange interaction in the NiPS;3
Hamiltonian, and excluding J3 from the fitted model worsens
the fit by an order of magnitude. To visually demonstrate
the effect of J3, we plot the best fit Hamiltonians both with
and without J3 in Fig. 14. For certain cuts along k, nonzero
J3 is necessary to produce any dispersion at all, which in

TABLE III. Local (on-site) hopping integrals (meV).

Local
da do_y dy, dy, dyy
da 0.00 0.00 222 —-2.22 4.60
do_y 0.00 —-17.22 —-3.40 3.40 0.00
dy, —-2.22 —-340 —1339.76 53.81 46.98
dy, —-2.22 3.40 53.81 —1339.76 46.98
dyy 4.60 0.00 46.98 4698 —1330.35

experiment is quite substantial. Indeed, if we force J3 to be
zero and refit (including up to Js), we find that the best fit
x24 worsens by an order of magnitude (x2, = 41.5 for J; —
J -5, Xéd = 414.9 with J; = 0). Thus the magnitude of
Js is well constrained by the experimental neutron scattering
data.

APPENDIX C: RESOLUTION CONVOLUTION

The instrumental resolution uses an incident beam profile
calculated by Monte Carlo ray tracing in MCSTAS with GPUs
[47]. This profile is then used to calculate point spread func-
tions (PSFs) on a discrete array across the slice by using the
dgsres tool in MCVINE [48]. Next the PSFs are fit to provide
parameters that allow interpolation of the resolution to any
point in the slice [49]. The model slice to convolute was then
calculated in SPINW on a grid much finer than the resolution.
Finally, the interpolated functions were used to convolute the
model slice with the instrumental resolution and produce the
results.

For this specific slice the incident beam energy matching
the measurement of E; = 28.94 meV was calculated [50]. The
discrete array grid was along k from —4 to 4 in steps of 0.4
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TABLE IV. Nearest-neighbor hopping integrals (meV).

Z; bond X, bond
d. da_y d,; dy; dyy d. da_p dy; dy, dyy
da —52.94 0.00 —1.97 —1.97 176.01 —21.43 17.50 66.07 —85.97 —61.37
da_yp 0.00 —10.72 67.39 —67.39 0.00 17.50 —39.73 34.68 157.39 —36.97
d,, —1.97 67.39 45.49 13.28 34.00 66.07 34.68 42.59 36.31 19.48
dy, —-1.97 —67.39 13.28 45.49 34.00 —85.97 157.39 36.31 —174.72 36.19
dyy 176.01 0.00 34.00 34.00 —178.25 —61.37 —-36.97 19.48 36.19 4391

and along /iw from —5 to 26 in steps of 2 meV. The model
slice was over the same bounds with 2036 k bins and 1466 Aw
bins.

APPENDIX D: EFFECTS OF SU (3) DYNAMICS

As noted in the main text, an S = 1 spin technically has
SU (3) symmetry. For weak anisotropies the S = 1 spin can
be treated as a dipole, but as anisotropy grows, the higher-
order multipolar effects become more manifest, which allows
a single-site spin singlet (S = 0) state [40]. To simulate the
effects of this in NiPS3, we calculated the inelastic neutron
scattering spectrum using the generalized spin wave package
SU(N)NY software suite [51] using Landau-Lifshitz dynamics
[52] on a 75 x 75 x 4 supercell at T = 5 K using the fitted
Hamiltonian in Table L. [In SU (3) simulations the anisotropy
was multiplied by 2 to keep the spin wave gaps at I" the same
as in SU(2).] Both the SU (3) and SU (2) results are shown in
Fig. 15. Note that the simulations in Fig. 15 do not include the
effects of finite momentum space resolution.

The simulated SU(3) and SU(2) spectra are nearly iden-
tical, involving only a weak 14% suppression of low-energy
intensity from higher-order SU (3) effects. If we normalize the
low-energy intensity relative to the 10—15 meV modes from
q = K (which practically speaking is what is done in Fig. 8),
we find a suppression of 39% in SU (3) intensity relative to
SU(2). This is a mild reduction in intensity, but nowhere near
as much as would be required to explain the absent intensity
in Fig. 8. This means that the reduced low-energy intensity,
alongside the reduced static magnetic moment, requires a
more exotic explanation.

APPENDIX E: FIRST-PRINCIPLES CALCULATIONS

We perform density functional theory (DFT) calcula-
tions as implemented in VASP [53,54]. The calculations
are performed within the Perdew-Burke-Ernzerhof (PBE)

generalized gradient approximation (GGA) [55] for the
exchange-correlation functional without spin-orbit coupling.
We use projector augmented wave (PAW) pseudopotentials
[56,57] with an energy cutoff of 300 eV and an 11 x 11 x 9
Monkhorst-Pack k-point mesh. We adopt the experimental
lattice constants of Wildes [5] for C2/m bulk NiPS; and
relax the atomic positions until component forces are less
than 1 meV/ A. We use WANNIER9O [58-60] to create a tight-
binding Hamiltonian by projecting the band structure onto real
Ni d orbitals. The maximal-localization step is not performed
in order to maintain the symmetry of the Wannier functions
close to their centers. The disentanglement window is shown
by the double-headed arrow in Fig. 16(a) and the disentangle-
ment convergence criterion is set to 10'> A2, The resulting
Hamiltonian is ensured to be symmetrized by postprocessing
with WANNSYMM [61].

The global Cartesian coordinate system was chosen such
that the projection of the z axis onto the Ni plane is perpen-
dicular to the Z; bond [62]. Explicitly, the primitive lattice row
vectors for this choice of axes are

d = (—2.3932999259, 4.7774699422, —2.3841700163),

b= (—4.7774699422, 2.3932999259, 2.3841700163),
¢ = (2.8698582203, 2.8698582203, 5.2691203152),
(ED)

in units of A.

Figure 16 shows the excellent agreement between the elec-
tronic band structure calculated with DFT and the Wannier
tight-binding model for the Ni d orbitals. We accurately cap-
ture the eg bands near the Fermi level and the lower #,, bands.

To carry out the second-order perturbation calculation, the
single-particle Hamiltonian as parametrized by a Wannier
tight-binding model is supplemented by a local Coulomb

TABLE V. Second-nearest-neighbor hopping integrals (meV).

Z, bond X, bond
d: dxz,yz dy, dy, dyy d. dxz,yz d,, dy, dyy
d. 29.54 3.25 —43.37 4.04 67.06 3.58 —12.56 27.18 —-51.42 —-3.02
da_yp —-3.25 —5.17 26.69 —31.79 19.83 —17.29 19.47 15.87 46.52 —48.79
dy; 4.04 31.79 5.15 —44.68 9.16 46.00 —22.06 5.20 11.64 20.57
dy. —43.37 —26.69 18.10 5.15 11.79 —17.11 70.16 7.20 —2.98 12.50
dyy 67.06 —19.83 11.79 9.16 —3.50 —28.69 —14.71 —42.31 8.83 4.80
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TABLE VI. Third-nearest-neighbor hopping integrals (meV).

Z3 bond X3 bond

d» do_p d., dy. dyy ds do_y dy, dy. dyy
do —47.60 0.00 2.19 2.19 72.99 152.31 111.35 —6.38 —35.50 5.70
dyo_yp 0.00 215.52 —9.11 —9.11 0.00 111.35 18.54 —0.69 62.54 5.44
dy, 2.19 -9.11 12.03 —11.18 —5.21 —6.38 —0.69 11.03 —4.02 —10.72
dy, 2.19 -9.11 —11.18 12.03 -5.21 —35.50 62.54 —4.02 31.64 —6.26
dyy 72.99 0.00 —-5.21 —-5.21 32.74 5.70 5.44 —10.72 —6.26 11.37
interaction Hamiltonian given by where « and 8 label (yz, zx, xy, 22, x> — y?) at the Ni d shell,

(-‘—) . . . . .

B N ¥ , + + and d;;!) is the annihilation (creation) operator of an electron at
Hy =U Z dypdatdy doy +U Z dyydardg dpy orbital & with spin o. U and U’ are the intraorbital Coulomb
¢ aFp interaction and the interorbital Coulomb interaction, respec-
+ U = Jy) Z d;'a dyo d;a dpo Fively, and Jy represents the interorbital exchange i.nteracti'on,
wBo i.e., the Hund coupling (fourth term), and the interorbital
’ pair hopping (fifth term). Between three parameters, we as-
+Jy Z(d;f?dmdgldai + d;%dmd;ldm), (E2) sume U’ = U — 2Jy [63]. Because the energy scale of U is

af

FIG. 18. In-plane atoms to which the hopping integrals of
Tables 1V, V, and VI refer.

order of eV, while that of the off-diagonal and anisotropic
terms in the crystal field is smaller than 0.1 eV, except for
the level difference between e, and t,, multiplets, known
as 10Dg, we only consider 10Dg by averaging e, and 1,
levels,

Hcr = 10Dg Z di dyy, (E3)

aeceg,0

with the average t,, level set to zero. The relativistic spin-orbit
coupling is not included for simplicity.

By diagonalizing Her + Hy with d® configurations for the
Ni** ion, we obtain the high-spin €25, ground state. From a

pair of such high-spin ef,tgg states, we proceed to carry out
second-order perturbation calculations with respect to inter-
site electron hopping between Ni sites. Here, we consider
two magnetic sites with ferromagnetic spin alignment (Egy,)
and antiferromagnetic alignment (Eapy) and compute the
second-order correction to the ground-state energy. During
this process, all excited states for d” and d° configurations are
included by diagonalizing Hcr + Hy . Finally, considering the
full spin rotational symmetry, an exchange constant at a given
pair of Ni spins is given by J = (Epy — Earpm)/2. Figure
17 shows the exchange constants as a function of U and Jy
for various parameters, and Tables III, IV, V, and VI show
the hopping integrals for the on-site through third-neighbor
interactions (Fig. 18).
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